Menu_Home Home   Menu_Latest Latest   Menu_Search Advanced Search   Menu_Browse_by_Year By Year   Menu_Browse_by_Division By Division
Screen decoration graphicsLogo

Extracting Causal Graphs from an Open Provenance Data Model

Miles, Simon and Groth, Paul and Munroe, Steve and Jiang, Sheng and Assandri, Thibaut and Moreau, Luc (2007) Extracting Causal Graphs from an Open Provenance Data Model. Concurrency and Computation: Practice and Experience, 20 (5). pp. 577-586.

This is the latest version of this item.

PDF - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader


The open provenance architecture (OPA) approach to the challenge was distinct in several regards. In particular, it is based on an open, well-defined data model and architecture, allowing different components of the challenge workflow to independently record documentation, and for the workflow to be executed in any environment. Another noticeable feature is that we distinguish between the data recorded about what has occurred, emphprocess documentation, and the emphprovenance of a data item, which is all that caused the data item to be as it is and is obtained as the result of a query over process documentation. This distinction allows us to tailor the system to separately best address the requirements of recording and querying documentation. Other notable features include the explicit recording of causal relationships between both events and data items, an interaction-based world model, intensional definition of data items in queries rather than relying on explicit naming mechanisms, and emphstyling of documentation to support non-functional application requirements such as reducing storage costs or ensuring privacy of data. In this paper we describe how each of these features aid us in answering the challenge provenance queries.

Item Type:Article
ID Code:1267
Deposited By:Dr Simon Miles
Deposited On:02 Jun 2008 17:58
Last Modified:13 Apr 2009 18:18

Available Versions of this Item

Repository Staff Only: item control page